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A R T I C L E  I N F O    A B S T R A C T   
Keywords:  In cloud computing environments, effective data placement is critical for optimizing system performance and resource 

utilization. This research introduces an innovative framework: Enhanced Cloud Data Placement Strategy Using Marine 

Predator Optimization. To address this challenge, this algorithm leverages the Marine Predators Algorithm (MPA), a 

nature-inspired metaheuristic inspired by marine predators' hunting behavior, balancing exploration and exploitation for 

efficient optimization. The proposed framework leverages MPA's exploration and exploitation capabilities to reduce data 

movement between data centers and enhance resource allocation efficiency. Through simulation in a controlled 

environment using the CloudSim toolkit, we evaluated the performance of MPA in comparison with other state-of-the-art 

metaheuristic algorithms, including the Gaining Sharing Knowledge-based Algorithm (GSKA), War Strategy Optimization 

(WarSO Generalized Whale Optimization Algorithm combined with Whale Optimization Algorithm (GWO_WOA), and 

Success History Intelligent Optimizer (SHIO). Experimental results demonstrate that MPA outperforms these algorithms 

regarding runtime and overall resource utilization. Further tests, including scalability evaluations with increasing dataset 

sizes and data center numbers, revealed MPA's robustness and adaptability for large-scale cloud infrastructures. The 

performance comparison indicates that applying MPA to solve the proposed problems consistently yields lower makespan 

and runtime, positioning it as a promising solution for dynamic and heterogeneous cloud environments. 
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1. Introduction 

Each detail of data is significant and may guide the decision makers to change their minds and make the right decision, in all business fields, 

research, social media, and even governmental data. The data generated daily is huge and critical for decision-makers. Data analysis is a very useful and 

decision-driven process done over big data. It helps in problem-solving, decision-making, manufacturing, and research, and in finding different patterns 

to deal with the routine process in all aspects. Big data storage is a very critical field as we want to reuse these amounts of detailed information; different 

approaches are required than the usual data storage approaches [1, 2]. The decision-making process for big data requires a lot of effort, from the process 

of collecting data until the best results are achieved. Much research has been conducted by multidisciplinary and industrial experts to study and produce 

the approaches, methods, and tools that can be applied to big data processing [3, 4]. The large size of the data might contain a complex type of data set, 

which means that the data set has multiple types of criteria and has an imbalance, and inconsistent data values. Data veracity indicates that big data has 

very high uncertainty and inconsistent data. Big data can be categorized into four phases: data generation, data acquisition, data storage, and data 

analysis before we can access and analyze the data; which is the main goal of big data access, we have to store the data suitably to make it easy to access 

it later [5-7]. 

Big data researchers claim that traditional analytical tools often have difficulties in managing big data; however, storage technologies have not 

changed the fundamental conventional business intelligence approaches in ordinary business organizations, as different types of organizations may not 

be the same [8,9]. Before cloud computing, grid computing and sector computing were proposed as solutions for big data storage, but the cloud 

computing concept is one of the best solutions for big data storage. Cloud computing is an easy-access resource-sharing approach to solve big data 

storage and processing problems, especially since cloud resources are available anytime, anywhere, and as needed, and also the cost is as used [10,11]. 

Efficient data placement in distributed computing environments, such as cloud systems, has grown increasingly challenging due to the rapid 

expansion in both data volume and variety. Traditional approaches, like deterministic algorithms, often fall short in adapting to the dynamic and 

heterogeneous nature of these environments. This can lead to inefficient use of resources and reduced system performance. As data diversity and 
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workloads increase, finding flexible and scalable data placement strategies is essential to ensure optimal resource utilization and system responsiveness 

in cloud computing [12,13]. Cloud data placement is a well-known combinatorial optimization challenge, where the goal is to efficiently distribute 

datasets across multiple data centers. Each dataset has specific storage and computational requirements, while data centers have limited storage 

capacities but can handle computations concurrently. The problem lies in minimizing data scheduling operations during task execution while ensuring 

that storage and computational resource constraints are met. Efficient data placement can significantly enhance performance by reducing latency and 

improving the overall system’s responsiveness and resource utilization [1]. 

In recent years, metaheuristic algorithms inspired by nature have become one of the hot topics in solving many problems.  Genetic algorithms, 

particle swarm optimization, and simulated annealing are some examples that draw inspiration from the domains of biological and physical phenomena 

to tackle complex optimization issues arising in various domains [14]. For example, genetic algorithms, which simulate the process of natural selection, 

have been used to optimize data placement by exploring a wide search space and evolving solutions over successive generations [15]. Similarly, ant 

colony optimization, based on the foraging behavior of ants, has been applied to optimize data placement strategies by enabling agents to discover near-

optimal solutions through indirect communication [16]. Moreover, particle swarm optimization, inspired by the social behavior of bird flocks, has shown 

promise in solving high-dimensional data placement problems. This method allows for the exploration of complex search spaces and has been used to 

optimize data distribution in cloud storage systems, improving both performance and cost-efficiency [17]. These nature-inspired algorithms offer an 

advantage in managing the uncertainties and dynamic nature of cloud computing environments. 

The problem can be formulated as follows: “How can big data be efficiently allocated across a cloud environment while minimizing time, optimizing 

costs, reducing network cost, and ensuring a balanced workload?” The primary objective of this research is to propose a framework that implements a 

metaheuristic algorithm that can effectively allocate the data and address these multiple constraints simultaneously. Metaheuristic algorithms are 

particularly well-suited for solving nondeterministic polynomial hard (NP-hard) and combinatorial problems like data placement, where finding optimal 

solutions using traditional methods within a reasonable amount of time is challenging [14]. 

Recent studies have highlighted the growing importance of metaheuristic approaches in addressing such complex optimization problems in cloud 

computing. For instance, the use of metaheuristics like Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) has been explored in data 

placement to improve resource utilization. These methods, although effective, still have limitations in balancing time, cost, and network constraints, 

which necessitates the exploration of newer and more efficient algorithms [18-20]. It is important to revisit and define the key terminologies and 

concepts of this study to provide a comprehensive understanding of it. Cloud computing is a technology that delivers various services such as storage, 

computing power, and networking over the internet. Rather than owning or maintaining physical data centers, organizations can rent cloud services. 

This paradigm shift enables businesses and individuals to use computing resources as needed without upfront investment in hardware [21]. Cloud 

computing is primarily categorized into three models: public cloud. In the public cloud, third-party cloud service providers offer resources such as 

virtual machines, storage, and applications over the internet [22]. The second model is a private cloud, a cloud infrastructure that is used by a single 

organization. Private clouds offer more control over data, security, and compliance [23]. The last one is the hybrid cloud, which integrates both public 

and private cloud models. Hybrid clouds provide a balance between cost efficiency and data security, making them a popular choice for enterprises [24-

26]. Managing large, diverse datasets presents challenges, particularly in cloud computing. Surveys highlight issues like storage, data privacy, latency, 

and fault tolerance[27]. The varied nature of big data, including structured, semi-structured, and unstructured formats, necessitates tailored storage 

and processing methods. Organizations must adopt specialized techniques like data integration, preprocessing, indexing, and advanced algorithms for 

efficient and safe data management and analysis in the cloud [28-30]. 

Cloud computing systems have many categories of heterogeneous processors, meaning that computing nodes can vary in processing capabilities 

based on factors such as clock speed, core count, cache size, and memory bandwidth. The costs associated with executing tasks within these 

environments fluctuate depending on the specific processor and network bandwidth available at each cloud node. Therefore, careful planning and 

optimization are essential to ensure efficient big data storage and processing, maintaining both high performance and cost-effectiveness[31,32]. The 

data placement problem in data centers represents a complex combinatorial optimization challenge, where the primary objective is to strategically 

distribute datasets across multiple centers to optimize resource utilization and computational efficiency. One of the desired goals is to ensure that each 

dataset is stored in only one data center, maximizing the use of storage without exceeding capacity limits [33-36]. Metaheuristic algorithms are powerful, 

flexible methods for tackling complex optimization problems that are difficult to solve using traditional methods. These algorithms, inspired by natural 

and behavioral phenomena, aim to find near-optimal solutions efficiently. By balancing exploration (seeking diverse solutions) and exploitation 

(optimizing known good solutions), they can navigate vast solution spaces without getting trapped in local optima. In cloud computing, metaheuristics 

have proven effective in resource allocation and data management [37-39]. 

The MPA is an emerging metaheuristic that models the hunting behaviors of ocean predators like sharks and whales. MPA alternates between 

phases resembling aggressive searching and patient waiting, allowing it to explore solutions comprehensively while avoiding local optima. In cloud 

systems, MPA has shown great promise in optimizing data placement, effectively improving resource utilization, and processing speed. Key attributes 

of the MPA include Exploration-Exploitation Balance: MPA excels in balancing the search for diverse solutions with refining known optimal areas, 

helping to avoid local optima and reach near-optimal solutions. Adaptive Parameter Adjustment: By adjusting parameters in response to specific 

problem characteristics, MPA enhances its performance across varied scenarios. Efficient Search Mechanism: MPA systematically explores the solution 

space, focusing on promising regions to maximize efficiency while minimizing unnecessary calculations [40,41]. 

In Alboaneen et al. [42], the authors proposed a hybrid metaheuristic approach that addresses data placement over virtual machines (VMs) as a 

combined problem, optimizing resource use and lowering energy costs by reducing makespan and allocation expenses. Simulations show promising 

gains in energy efficiency, Quality of Service (QoS), and resource utilization. However, additional analysis of computational overhead would further 

clarify the approach’s practicality in larger data centers. In Prabhu et al. [39], an advanced, nature-inspired data placement method for cloud 

environments using the Firefly Algorithm is introduced. The proposed approach works to optimize data placement by enhancing the attraction function 

and implementing local search to achieve fast convergence, reduce time, and data retrieval. While promising, the study could improve by conducting 

some experiments over large-scale datasets to make valid comparisons and analyze the performance over different scenarios. In Rajashekar et al. [43], 

a hybrid algorithm is proposed that combines Sine Cosine-based Elephant Herding Optimization (SCEHO) with Improved Particle Swarm Optimization 

(IPSO) to enhance cloud scheduling. This hybrid approach integrates the exploration ability of SCEHO with the fine-tuning of IPSO for efficient resource 

allocation, load balancing, and latency minimization. Experimental results show improved performance in execution time, memory efficiency, and 
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latency. While effective, SCEHO-IPSO faces challenges. The increased complexity of the algorithm may raise the overhead and affect the performance. In 

Hai et al. [44], present some optimization techniques for the efficient task-scheduling process in a cloud environment. It examines some traditional 

algorithms, such as Heterogeneous Earliest-Finish-Time (HEFT) and Critical Path on Processor (CPOP), for communication cost minimization and task 

heterogeneity handling, introducing enhanced versions of these approaches that take security into account to protect data during processing. While 

these improvements offer a balanced approach to scheduling, the study’s analysis is limited by a lack of scalability testing on large workloads.  

In Yahia et al. [45], present a comprehensive examination of how nature-inspired algorithms can enhance scheduling in cloud computing 

environments. Some key algorithms have been focused on Ant Colony Optimization (ACO), Ginatic Algorithm (GA), Particle Swarm Optimization (PSO), 

and Cuckoo Search (CS). Such algorithms would be assessed concerning their capabilities to handle vital issues like load balancing, minimization of 

makespan, energy consumption, and resource allocation. Inspired by biological procedures for exploration and exploitation, these algorithms find a 

highly suitable application in dynamic and distributed cloud computing systems. However, there are no detailed performance metrics. In Algamdi [46], 

a hybrid methodology has been investigated to improve load balancing in cloud computing frameworks. The authors implement neural networks with 

binary particle swarm optimization to improve the efficiency of resource allocation. In this integration of Artificial Neural Network ANN, the binary 

particle swarm optimization (BPSO) algorithm is enhanced to guarantee better optimization of the scheduling of tasks across virtual machines. The 

research objectives were minimizing makespan, enhancing resource utilization, and achieving effective load balancing. Experimental results show that 

the ANN-based BPSO model outperforms other techniques in optimizing resource allocation and for better processing time, and effective load 

distribution. The one major disadvantage of this approach is the computational overhead. Besides, the combination of ANN and BPSO introduces 

complexity that might be hard to implement and maintain.  

In Table 1, the reviewed studies highlight the significant advancements in data placement in cloud computing, leveraging hybrid and nature-

inspired metaheuristic approaches. These methods consistently demonstrate improvements in reducing makespan, enhancing resource utilization, and 

optimizing energy efficiency. However, challenges such as computational overhead, scalability testing, and real-time applicability remain prevalent. 

Future research should focus on addressing these gaps through adaptive hybrid frameworks, large-scale dataset experiments, and practical 

implementations to further refine and validate these innovative solutions. 

Table 1: Summary of related research papers 

Approach Focus Area Key Contributions Limitations Reference 

Hybrid 

metaheuristic 

Data placement & 

task allocation 

Optimizes resource use, reduces energy cost, 

and makes 

Lacks computational overhead 

analysis for large-scale data centers 
[42] 

Firefly 

Algorithm 

Data placement in 

the cloud 

Fast convergence, time, and data retrieval 

optimization 

Needs large-scale experiments and 

scenario comparisons 
[39] 

SCEHO + IPSO 

(Hybrid) 

Cloud Scheduling Combines exploration & fine-tuning for 

efficient allocation, load balancing, and latency 

Increased complexity and algorithmic 

overhead 
[43] 

Enhanced HEFT, 

CPOP 

Task scheduling & 

security 

Security-aware improvements in traditional 

task-scheduling algorithms 

Lacks scalability tests on large 

workloads 
[44] 

ACO, GA, PSO, CS  Scheduling & 

resource allocation 

Addresses load balancing, energy, makespan, 

and allocation using bio-inspired strategies 

No detailed performance metrics [45] 

ANN + BPSO 

(Hybrid) 

Load balancing & 

scheduling 

Improved resource utilization, processing time, 

and load distribution 

Computational overhead and 

implementation complexity 
[46] 

 

 In this research, we aim to implement recent and novel metaheuristic-based algorithm to solve the data placement problems, comparing them 

with other well-established metaheuristic algorithms from various categories. The goal is to minimize the total number of data scheduling operations 

and reduce the need for inter-data center communication. Performance evaluations will validate the model's effectiveness using simulations and real-

world big data workloads. The rest of this paper is organized as follows: Section 2 explains the materials and methodology, focusing on the proposed 

approach and its development. Section 3 presents the experimental setup and results, including a comparison of the proposed framework with other 

algorithms. Section 4 provides a discussion of the findings and key insights. Finally, Section 5 concludes the paper and suggests future research. 

2. Materials and Methods 

In cloud computing environments, there are many challenges in data placement operations because of the large-scale resource complexity and 

workloads [47]. In this research, we introduce the Enhanced Cloud Data Placement Strategy Using Marine Predator Optimization, applying a 

metaheuristic algorithm called MPA. The proposed framework is intended to be an innovation-based solution targeting optimizing the data allocation 

process over the cloud, which is categorized as a combinatorial optimization problem. With NP-hard problems like this problem, the traditional 

algorithms often fail to find optimal solutions within a suitable time, which makes metaheuristic algorithms a more suitable alternative. The main 

objective of this study is to enhance performance and reduce overall runtime within cloud systems [38,40]. The proposed framework focuses on 

identifying and applying a metaheuristic algorithm for which there is no investigation for data placement. The goal is to utilize and examine new methods 

over existing metaheuristics from various categories, developing an enhanced framework that guarantees resource utilization. 

2.1 The mathematical representation of the combinatorial optimization problem 

To accurately define and solve the data placement challenge in cloud computing, it is essential to formulate the problem mathematically. This 

section presents a formal model that captures the key objectives and constraints of the problem, allowing it to be approached as a combinatorial 

optimization task. Given that data placement is NP-hard, this formulation will guide the development and evaluation of our proposed metaheuristic 

solution. The goal of the data placement problem is to assign data blocks to virtual machines (VMs) or storage nodes in a cloud environment such that 
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certain objectives (e.g., minimizing cost, latency, or data movement) are optimized while respecting system constraints (e.g., storage capacity, data 

locality, bandwidth, etc.) [48]. 

Notation:  

• D = {d₁, d₂, ..., dₙ} be the set of data blocks 

• V = {v₁, v₂, ..., vₘ} be the set of virtual machines 

• xᵢⱼ ∈ {0, 1}: 

   - xᵢⱼ = 1 if data item dᵢ is assigned to VM vⱼ 

   - xᵢⱼ = 0 otherwise 

• cᵢⱼ: the cost (e.g., time, energy, or bandwidth) of placing dᵢ on vⱼ 

• sⱼ: the storage capacity of VM vⱼ 

• sizeᵢ: the size of data item dᵢ 

Objective Function: 

Minimize total placement cost: min ∑₁ⁿ ∑₁ᵐ cᵢⱼ * xᵢⱼ 

Constraints: 

Each data item must be placed on exactly one VM: ∑₁ᵐ xᵢⱼ = 1 ∀ i = 1, ..., n 

Storage capacity constraint of each VM: ∑₁ⁿ sizeᵢ * xᵢⱼ ≤ sⱼ ∀ j = 1, ..., m 

Binary assignment variables: xᵢⱼ ∈ {0, 1} ∀ i = 1, ..., n; j = 1, ..., m 

2.2 The Proposed Algorithm: Enhanced Cloud Data Placement Strategy Using Marine Predator Optimization  

The proposed data placement strategy employs the Marine Predators Algorithm (MPA), a nature-inspired metaheuristic, to optimize dataset 

allocation across distributed cloud data centers. The algorithm addresses challenges in minimizing data access latency while adhering to storage 

capacity constraints. Input parameters include datasets (defined by size), data centers (with storage limits), computations (task requirements), and an 

access matrix mapping dataset-task dependencies as mentioned in Fig. 1. Initial solutions are generated as "predators" exploring the solution space, 

representing diverse dataset-to-data-center assignments. These solutions evolve through exploration and exploitation phases to identify optimal 

placements. 

 

 
Fig. 1. Enhanced Cloud Data Placement Strategy Using Marine Predator Optimization Algorithm 

During exploration, datasets are randomly distributed to maximize solution diversity. In the exploitation phase, high-performing solutions are 

refined to reduce data scheduling costs—the total number of data accesses required to fulfill computation requests. The fitness function prioritizes 

placements that minimize this cost while respecting capacity limits. The algorithm iterates until convergence, yielding an optimized placement matrix. 

This approach balances global exploration and local refinement, ensuring scalability and efficiency in dynamic cloud environments. It aligns with trends 

in metaheuristic-driven resource management, offering a robust solution for large-scale data-intensive applications [40, 41]. 

The algorithm proposes to optimize data placement by applying MPA and balancing exploration and exploitation within the search space to ensure 

minimal data movement between data centers. By placing datasets adjacent to the virtual machines (VMs) doing the associated tasks, the suggested 

method aims to reduce communication across data centers. This closeness improves system performance by lowering latency. By comparing the 

proposed framework applying MPA with GSKA: a nature-inspired metaheuristic that simulates human interactions and knowledge exchange to solve 

optimization problems by balancing exploration and exploitation through two stages: knowledge acquisition and knowledge sharing, WarSo: a nature-

inspired metaheuristic that mimics military tactics to solve complex optimization problems by dynamically balancing exploration and exploitation 
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phases. It has been proposed for applications in cloud computing, such as resource allocation and task scheduling. and GWA_WOA: combines the Grey 

Wolf Optimizer (GWA) and Whale Optimization Algorithm (WOA) to leverage their complementary strengths in exploration and exploitation, creating 

a hybrid metaheuristic for solving complex optimization problems [49-51], this study aims to provide valuable insights into the robustness and 

scalability of MPA in real-world cloud scenarios, especially when managing large-scale datasets. 

Algorithm inputs are the datasets, data centers, computations, and expected access requirements: A matrix representing the association between 

datasets and computations, indicating which datasets are needed for which computations. The optimal solution, an optimized placement matrix that 

allocates datasets to data centers in a way that minimizes data scheduling while adhering to capacity restrictions, is produced by MPA after iterating 

through the exploration and exploitation phases. Fig. 2 displays the key elements of the algorithm and also shows how the MPA algorithm is utilized. 

 
Fig. 2 Main Components of the Proposed Algorithm 

The following Fig. 3 shows the algorithm workflow as follows: the first step is initializing all the necessary parameters for datasets, data centers, 

computations, and their requirements, the second step is to define the core functionality of the data placement problem, including constraint checking 

and objective function evaluation. Step three is to set the bounds for each dataset's assignment. The next step is creating the problem instance based on 

the initialized data and bounds. Then the configuration of the MPA with the necessary parameters, solving the problem using and finding the near-

optimal solution. Finally outputs the best solution and its corresponding fitness value. 

 
Fig. 3 Data Flow in the Proposed Algorithm 
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3. Results 

3.1 Experiment Setup 
The experimental settings and techniques utilized to assess the suggested framework's performance in data placement frameworks are described 

in this section. We performed controlled experiments to assess the efficiency of the suggested framework for data placement. A Windows computer 

with an Intel Core i7-8550U CPU running at 1.80 GHz with a turbo boost capacity of up to 2.00 GHz and 12 GB of RAM made up the testing setup. Python 

was used to implement the algorithms. The absence of defined benchmarks or simulated environments created especially for evaluating data placement 

issues, especially with metaheuristic techniques, was one major obstacle we faced. We developed our benchmark dataset to get around this problem. 

With the use of this unique dataset, we were able to thoroughly assess the suggested framework's performance using MPA in comparison to one math-

based algorithm, SHIO, and two human-inspired metaheuristic algorithms, GSKA and WarSO. Through the use of this dataset, we made sure that the 

various optimization techniques were fairly compared, enabling a thorough evaluation of their efficacy in various data placement scenarios. 

CloudSim, which is a popular simulation toolkit made for cloud computing environments, was used to assess the proposed algorithms. We created 

a simulation of a cloud infrastructure with two data centers and two hosts in each. Using a time-shared virtual machine scheduling mechanism, each 

host has 20 GB of RAM, 1 TB of storage, and a bandwidth of 10 GB. The virtual machines (VMs) had processing speeds ranging from 100 to 1000 MIPS 

and were set up with a 1 GB picture size, 0.5 GB of memory, and a 1 GB bandwidth. The cloudlet lengths were generated following a normal distribution, 

with a mean of 10,000 and a standard deviation of 5,000. The proposed framework was implemented using Python and tested with CloudSim [52]. 

3.2 Performance Comparison 

We used CloudSim to simulate and evaluate a variety of metaheuristic algorithms, such as the MPA, GSKA, which is a human-based metaheuristic, 

and GWO_WOA; both are hybrid metaheuristic algorithms, to compare the performance in data placement. The key performance indicators (KPIs), 

including average performance, runtime, and the best result, were the focus of the evaluation. Due to their stochastic nature, it was insufficient to run a 

single run to evaluate the performance of these algorithms. Each algorithm's solution with the least amount of data scheduling operations is reflected 

in the best result measure. While execution time was used to assess computational efficiency, the average performance metric gave a more 

comprehensive view of algorithm performance by summarizing the results of all 100 executions. We changed the number of data centers and datasets 

to better evaluate scalability. We employed 15 data centers with capacities ranging from 10,000 to 20,000 GB and 100 datasets with sizes ranging from 

500 to 2000 GB in our simulation. Furthermore, we randomly produced 30 calculations with execution frequencies ranging from 10 to 30. 

Table 2 shows how well the suggested framework with MPA performs in comparison to GSKA and GWO_WOA, providing information on how well 

it works to optimize data placement in distributed cloud systems, especially concerning scalability and adaptability. The suggested algorithm performed 

better than the alternative approaches in important measures, as shown in the next section, Discussion. 

Table 2: Data placement solution quality (no. of accesses) and runtime in seconds 

 MPA GSKA GWO_WOA MPA GSKA GWO_WOA 

 Solution quality (No. of accesses) Runtime in seconds 

Best 4878 6853 5768 13.5 s 14.9 s 13.3 s 

Average 5667.8 7278.44 6462.72 17 s 18.4 s 14.16 s 

Worst 7003 7523 7060 23.2 s 27.4 s 15.5 s 

As mentioned in the following charts, Fig. 4 and Fig. 5, The fitness function assesses how well each solution performs based on 2 aspects: data 

scheduling which is defined as the total number of data scheduling operations needed to fulfill computation requests based on the placement of datasets, 

and the algorithm calculates the total number of data accesses across all computations for each solution. 

 

The experimental evaluation demonstrates that the proposed Enhanced Cloud Data Placement Strategy using the Marine Predators Algorithm (MPA) 

consistently outperforms other benchmark algorithms (GSKA, GWO_WOA, SHIO, and WarSO) in both solution quality and runtime. MPA achieved the 

lowest number of data accesses across best, average, and worst scenarios, indicating more efficient and balanced data placement. Additionally, it 

maintained competitive execution times, confirming its practical suitability for real-time and large-scale cloud environments. These outcomes highlight 

MPA’s effectiveness in delivering high-quality solutions with reliable performance under varying workloads and conditions. The results show that the 

proposed framework applying MPA provides a robust approach for solving the data placement problem with a strong balance between performance 

and efficiency across multiple runs. 
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Fig. 4 Solution Quality Chart 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Chart of Data Placement Runtime 

 

4. Discussion 

This section presents a detailed analysis of the results obtained from the experiments, focusing on the performance of the Enhanced Cloud Data 

Placement Strategy using the MPA. For comparative purposes, several nature-inspired optimization algorithms were evaluated, including GSKA, WarSO, 

GWO_WOA, and SHIO [49-51]. These algorithms were chosen based on their relevance to cloud resource scheduling and optimization challenges. 

Solution quality: The suggested framework achieved the best solution with the lowest data scheduling operation cost of 4878. In contrast, GSKA recorded 

the highest cost at 6853, followed by GWO_WOA with 5768. These values indicate that the suggested framework consistently outperformed both GSKA 

and GWO_WOA in generating efficient placement solutions. The average solution value across 100 runs further supports this observation, where the 

suggested framework recorded 5667.8, compared to GWO_WOA with 6462.72 and GSKA with 7278.44. Even in the worst-case scenario, the suggested 

framework remained superior, achieving a cost of 7003, which is better than GWO_WOA at 7060 and GSKA at 7523. These results demonstrate the 

robustness and reliability of the suggested framework under varying conditions. Additional comparative insights include WarSO, which recorded a 

solution cost of 5580, and SHIO, which resulted in 6021. Although both showed competitive results, they did not match the consistent performance of 

the proposed framework.  

Runtime Performance: Regarding execution time, the suggested framework recorded a best-case runtime of 13.5 seconds. GWO_WOA achieved the 

fastest runtime at 13.3 seconds, while GSKA and SHIO recorded 14.9 and 14.5 seconds, respectively. WarSO showed slightly slower performance with 

15.1 seconds. On average, the suggested framework achieved a runtime of 17 seconds, remaining competitive against GWO_WOA’s 14.16 seconds, 

GSKA’s 18.4 seconds, SHIO’s 17.5 seconds, and WarSO’s 18.1 seconds. Despite GWO_WOA being marginally faster on average, the suggested framework 

offered a stronger balance and trad-off between runtime and solution quality. In the worst-case scenario, the suggested framework recorded a runtime 

of 23.2 seconds, while GSKA reached 27.4 seconds, SHIO 24.8 seconds, and WarSO 26.7 seconds. GWO_WOA maintained a faster worst-case time of 15.5 

seconds. 

To contextualize the efficacy of the proposed MPA-based framework, it's instructive to examine similar studies employing nature-inspired 

algorithms for cloud resource scheduling. In Panesar and Chadha [52], introduce an optimization strategy that combines deep reinforcement learning 

(DRL) with a cloud-based adaptive multi-agent framework. The study is targeted at enhancing the efficiency of VM migration in cloud computing 

environments. The proposed technique combines the multi-agent system with DDPG, a class of DRL algorithms that enables dynamic and adaptive 
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decision-making for VM placement. This hybrid approach is designed to minimize migration costs, network latency, and makespan while optimizing 

resource allocation across the cloud infrastructure. It results from the experiment that the proposed technique has outperformed other scheduling and 

migration methods, showing improved performance, especially in decreasing computation overhead and balancing the loads. Enhanced Whale 

Optimization Algorithm (EWOA): Zhang and Wang (2024) introduced EWOA, integrating Lévy flight and adaptive crossover strategies to enhance 

exploration and convergence in task scheduling. Their simulations using CloudSim demonstrated that EWOA outperformed traditional WOA, ACO, and 

GA in resource utilization, energy consumption, and execution cost [54]. Hybrid Grey Wolf and Whale Optimization (HGWWO): Ababneh (2021) 

developed HGWWO to tackle cloud task scheduling, aiming to minimize costs, energy consumption, and execution time. The hybrid algorithm 

demonstrated superior performance over standalone GWO and WOA algorithms in simulations conducted using CloudSim [55]. In conclusion, the 

suggested framework demonstrated an excellent trade-off between solution quality and runtime performance. It consistently delivered competitive 

computing efficiency while producing optimal or near-optimal outcomes. Compared to other metaheuristic algorithms such as GSKA, GWO_WOA, SHIO, 

and WarSO, the proposed solution maintained superior performance across all evaluation metrics, emphasizing its suitability for practical deployment 

in cloud data placement environments. 

5. Conclusion 

In this study, we used the MPA to present an effective framework designed for cloud computing environments called Enhanced Cloud Data 

Placement Strategy Using Marine Predator Optimization. Our experimental results show that the suggested algorithms perform better than other 

techniques in terms of makespan reduction, resource allocation optimization, and system performance enhancement. Because of this, they are promising 

solutions for large-scale, dynamic cloud systems with a variety of resource configurations and activities of different complexity. Overall, this study 

highlights the potential of nature-inspired optimization algorithms like MPA in tackling complex scheduling challenges in cloud computing, paving the 

way for further research and development in this field. Additionally, our study demonstrates the effectiveness of MPA for optimizing both data placement 

and task scheduling within cloud environments. By comparing MPA with other state-of-the-art algorithms such as GSKA, WarSO, SHIO, and GWA_WOA, 

we illustrate its capability to achieve significant improvements in makespan, resource utilization, and runtime. This study opens the door for more 

research and development in this area: nature-inspired algorithms in addressing challenging scheduling problems in cloud computing. Furthermore, 

our study shows how well MPA works in cloud systems to optimize job scheduling and data location. This approach could be expanded in future studies 

to incorporate multi-objective optimization, which would handle aspects like fault tolerance and energy usage. 
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